
Scientific Visualization, 2019, volume 11, number 1, pages 91 - 106, DOI: 10.26583/sv.11.1.08

Building and Visualization of Sleek 3D Surfaces

without Misplaced Extremes

K.V. Ryabinin1, K.A. Matkin2
Perm State University, Perm, Russia

1 ORCID: 0000-0002-8353-7641, kostya.ryabinin@gmail.com

2 ORCID: 0000-0002-0444-9476, matkin.k@yandex.ru

Abstract

The paper is devoted to the visualization of functional dependencies expressed as
 () by building sleek 3D surfaces based on discrete sets of points. The criteria of sleek
surface quality are formulated taking into account the needs of scientific visualization and
visual analytics. The most important criterion is the absence of misplaced extremes and oscil-
lations on the result surface, because such artifacts can deliver false information about the
process being represented by the visualized data. The methods of building smooth surfaces in
the most popular scientific visualization software are examined against the formulated crite-
ria and it is discovered that the misplaced extremes are an issue in modern visualization
tools. To tackle this problem the new approach of building sleek surfaces is proposed. This
approach is based on the previously developed algorithm of building smooth 2D curves that
was generalized to the three-dimensional case.

The developed surface building algorithm consists of the following main steps. Assuming
to have the input data as a regular grid of 3D points, which correspond to the table-defined
function (), we first propose to build the set of smooth 2D curves along X and Z ax-
es. Afterwards, we propose to build bicubically blended Coons patches for all quads bounded
by each 4 neighbor points from the original data set. Then we discretize each Coons patch by
emitting new points to reach needed surface resolution. Next, we triangulate the created set
of points and calculate vertex normals using smoothing groups algorithm. Last, we smooth
the field of normals using Gaussian blur function.

The proposed algorithm meets the formulated criteria and ensures high visual quality of
result surfaces. It was integrated into multiplatform charting library NChart3D and scientific
visualization system SciVi, where it proved its correctness and stability by solving real-world
scientific visualization tasks.

Keywords: smooth interpolation, Bezier curve, Coons patch, Gaussian filter, misplaced

extremes, smooth surface, charts rendering, visual analytics.

mailto:kostya.ryabinin@gmail.com
mailto:matkin.k@yandex.ru

1. Introduction
Almost every multi-purpose scientific visualization and visual analytics tool allows to build
volumetric surfaces to graphically represent functional dependencies expressed as
 (). When it is about scientific experiments, very often f is a table of discrete values
obtained during measurements or mathematical modeling. Thereby the sample rate of f is
limited by the experiment’s circumstances and the result surface may become very rough.
While the most popular rendering technique nowadays is polygonalization, the visual qual-
ity of corresponding images with low sample rates of f become unacceptable (see Fig. 1a).
The one has to apply some smoothing interpolation to the set of values to achieve attrac-
tive and observable results.
One of the most popular ways in computer graphics to create smooth surface according to
the discrete set of points is to build NURBS [1]. However, this way is often inappropriate
for visual analytics needs, because NURBS surface does not contain the original point set
using it as vertices of bounding lattice (as shown in Fig. 1b) and thereby does not really re-
flect the process under analysis.
The other way is to use smooth (continuously differentiable) interpolation functions like,
for example, Hermite splines [2]. But this way in turn often gives so-called outliers: mis-
placed extremes on the surface, which do not belong to the original point set (as shown in
Fig. 1c). Sometimes it is all right to have these outliers for sake of surface smoothness, but
in some specific situations this can be a critical issue in terms of visual analytics. For ex-
ample, if f is a table of temperature measurements across some area, the Fig. 1c will deliver
potentially false information about the raise of temperature between two points in top-
right corner. Especially if the samples of f are actually close to each other, the oscillation
like in Fig. 1c is in fact very improbable and highly unwanted by showing continuously dis-
tributed values.

a b c

Fig. 1. Surface (painted blue) constructed by the set of control points (painted red) using
different approaches: linear interpolation (a), NURBS (b), Hermite splines (c).

This paper addresses the problem of building the sleek-appearing 3D surface with no mis-
placed extremes according to the discrete set of points. While this problem is indeed cru-
cial for solving several tasks of visual analytics, many visualization systems lack the effi-
cient implementation of such kind smoothing. In the previous work [3] 2D case was con-
sidered and the solution for building sleek 2D curves according to the discrete point set
was proposed. The present work is an improvement and generalization of that approach to
the 3D case.

2. Criteria of Sleek Surface Quality
The surface k-smoothness is normally defined as the ability to be continuously differenti-
ated k times, Ck, k > 0. Alternatively, according to E. Weisstein, a surface parameterized in

variables u and v is called smooth if the tangent vectors ⃗ and ⃗ in the u and v directions

satisfy ⃗ ⃗ [4].
However when it comes to the visualization and, in particular, visual analytics, the most
important is how the surface is perceived and whether it can deliver proper information to
the person examining the data. The perception in general is subjective, but it is based on
the shape and the shading. While mathematically smooth surfaces are perceived sleek, the
surfaces with derivative discontinuities (so-called C0-surfaces) are not necessary perceived
creasy. Moreover, if the shape is actually creasy, the proper shading can effectively mask it
(which is widely used in computer graphics to perform visually attractive presentation of
low-polygon approximations of 3D models).
Taking into account the visual analytics needs, the list of quality criteria for the surface

built by the discrete set of points { }, , is pretty the same as the list of

quality criteria for curves in [3]:

1. The surface should be an interpolation of { }, this means, it should contain { }.

2. The surface should be perceived as sleek as possible: there should be no noticeable
creases, or their number should be minimal.

3. There should be no misplaced extremes on the surface: minimum and maximum on

the [] [] should be in border points and the surface should not os-

cillate in the defined area.
4. There should be no self-intersections on the surface if the corresponding linearly in-

terpolated surface has no ones.

5. The surface should not oscillate in the vertical direction and for each []

[] should not intersect the bounding box with the sides parallel to vertical

axis and containing .

6. The building algorithm should be as efficient as possible.
The logic behind these criteria is described in detail in [3] related to the 2D curves and can
be transferred as is to the 3D case.

3. Test Point Set
Smoothing algorithms may spawn misplaced extremes in different combinations of neigh-
bor points, so it is matter of elaborate testing to prove that the particular algorithm gives
stable results. Table 1 contains the data set used in this paper for demonstration purposes.
This data set is quite random (the data are generated artificially), but it clearly shows the
misplaced extremes problem in all the algorithms the developed one is compared to.
Table 1. Data set used for demonstration purposes

 x = 0 x = 1 x = 2 x = 3 x = 4 x = 5 x = 6

z = 0 1.321 1.657 1.165 1.215 1.623 1.236 1.657

z = 1 1.265 1.654 1.154 1.165 1.153 1.648 1.654

z = 2 1.324 1.264 1.547 1.125 1.246 1.465 1.264

z = 3 1.165 1.654 1.125 1.154 1.315 1.135 1.654

z = 4 1.157 1.654 1.165 1.300 1.136 1.168 1.654

z = 5 1.215 1.658 1.184 1.156 1.163 1.185 1.658

It should be stressed, that while the proposed algorithm has no misplaced extremes on this
particular data set, it is not at all the proof of its stability, because this data set does not
cover all possible combinations of points positions. The stability of the proposed method
was proven by solving the real-world visual analytics tasks, see the Section 6.

4. Related Work

4.1. Subdivided Surfaces

The problem of creating smoothed versions of rough surfaces relates not only to the scien-
tific visualization and visual analytics, but also to other branches of computer graphics and
computational geometry (including photorealistic rendering, computer-aided design, etc.).
In polygon-based 3D graphics the smoothing of surfaces is all about subdivision – repre-
senting surfaces with more polygons than the origin point cloud ensures. In terms of
mathematics, there are generally two types of subdivision: approximation and interpola-
tion.
Approximation does not necessary contain the original set of points. The basics of approx-
imation are described in details by C.T. Loop [5]. The examples of this approach are
NURBS surfaces with their different modifications (like T-Splines [6]). Modern 3D
graphics editors implement similar algorithms, for example, Catmull-Clark subdivision [7]
used in Blender [8]. But the problem of these methods is always the same: approximated
surfaces are typically enclosed in the original ones as it is shown in [5] and can be seen in
Fig. 2. This means, they do not suit the very first criteria mentioned in the Section 2.

Fig. 2. Surface built by test point set and subdivided with Catmull-Clark algorithm in

Blender.

Interpolated surfaces meet the first criterion containing their control points. The interpola-
tion algorithms can widely vary. The most popular are based on the cubic polynomials, like
cubic Hermite interpolation mentioned above. The variety and variability of interpolation
approaches gives the ground to create a custom algorithm that could meet all the criteria
formulated.

4.2. Monotone Interpolation

There are several methods of monotone interpolation in 3D space. For example, the works
by M. Abbas et al. [9] and L. Allemand-Giorgis et al. [10] cover C1-continuous smooth in-
terpolation of gridded data, ensuring absence of misplaced extremes inside the input data
domain. These methods normally meet all the criteria indicated in the Section 2, but being
restricted by C1-continuity they are unable to handle corner-cases like very steep slopes
(for example, data sets of with non-functional dependency, where some neighbor points

have the same abscissa). Also, as it is shown below, these methods are not yet integrated
into the popular scientific visualization and visual analytics software.

4.3. Coons Patch
In case the interpolation between 4 control points P1, P2, P3, P4 is known and represented
as curves c0(s), c1(s), d0(t), d1(t), , c0(0) = d0(0) = P1, c0(1) = d1(0) = P2,
c1(0) = d0(1) = P3, c1(1) = d1(1) = P4, the Coons patch [11] can be constructed to build the
smooth surface between these curves using the following formula:

 () () () (), (1)
where I represents some interpolation and B represents bi-interpolation.
The interpolation method can vary. For example, in case of linear interpolation for I and
correspondingly bilinear for B, the components of formula (1) yield in the following:
 () () () (),
 () () () (),
 () ()() () () () () () ().
The result surface is called bilinearly blended Coons patch. An example is shown in Fig. 3.

Fig. 3. Bilinearly blended Coons patch.

Discussed Coons patch exactly meets its boundary curves, but if multiple patches are
joined, they do not necessarily have the same tangent planes at joint curves leading to the
creases along those curves. To fix this problem, I can be cubic and B – bicubic interpola-
tion. To find the exact representation of I and B, cubic Hermite splines can be used with
the weights chosen to match the partial derivatives at the corners. The result is called bicu-
bically blended Coons patch.
Coons patch is a handy tool to build the surface that potentially can meet the criteria men-
tioned in the Section 2, but the problem is to find the corresponding curves between con-
trol points.

4.4. Building Smooth Surfaces Using Popular Scientific Visuali-
zation Software

The modern scientific visualization software that is capable of 3D rendering normally pro-
vides functions to build surfaces by given set of points. The most popular tools provide au-
tomatic smoothing as well.
One of the most popular and powerful systems incorporating huge amount of mathemati-
cal solvers and providing a lot of visualization capabilities is Wolfram Mathematica [12].
Among other functions, it allows building surfaces by the discrete set of points. There are
two interpolation modes available: Hermite (function Interpolation with parameter Meth-
od->"Hermite") and B-spline [13] (function Interpolation with parameter Method-
>"Spline"). The results of both applied to the testing data set from the Section 3 are shown
in Fig. 4.

a b

Fig. 4. Surface built by Wolfram Mathematica using Hermite interpolation (a) and B-spline
interpolation (b).

As it can be seen from the figure, Hermite interpolation (the exact weights are not men-
tioned in the documentation of Mathematica) is better than B-spline interpolation accord-
ing to the criteria mentioned in the Section 2, but still has some false extremes (for exam-
ple, in top-right corner).
A lot of scientific visualization software utilize VTK library [14] under the hood, for exam-
ple ParaView [15] and its lightweight version for mobile devices KiwiViewer [16]. VTK sup-
ports wide range of rendering techniques and data visualization function. It provides ab-
stract class vtkSubdivisionFilter to generalize approximation and interpolation algorithms
for building surfaces. Currently, 3 methods are included in the VTK core: vtkLoopSubdivi-
sionFilter that implements smoothing algorithm introduced by C.T. Loop [5], vtkButter-
flySubdivisionFilter that implements so-called butterfly scheme introduces by D. Zorin et
al. [17] and vtkLinearSubdivisionFilter that implements regular linear interpolation (the
surface is not smoothed). The rendering results of all these methods applied to the testing
data set are shown in Fig. 5.

a b c

Fig. 5. Surfaces built by VTK using Loop’s algorithm (a), butterfly algorithm (b) and linear
interpolation (c).

As seen from Fig. 5, Loop’s method behaves like NURBS: the surface does not contain the
control points. Thereby, this method does not meet the very first criterion. The butterfly
filter suites the first criterion, but spawns misplaced extremes and oscillations. The linear
subdivision filter does not build sleek surface. Consequently, VTK does not provide the de-
sired smoothing function.
The next popular library for scientific visualization is MathGL [18]. This library is not as
versatile as VTK concentrating on the charts only, but it is also used in a wide range of ap-
plications requiring high-quality visualization. MathGL generally provides two ways to
build the surface by the discrete set of points: spline-based interpolation (accessible with
the refill function) and linear interpolation (accessible with the datagrid function). The
rendering results are shown in Fig. 6.

a b

Fig. 6. Surfaces built by MathGL using spline interpolation (a) and linear interpolation (b).

The shape of surface in Fig. 6a is very similar with the one in Fig. 4b. Probably, similar ap-
proaches are used. As in the previously considered software, MathGL either builds the sur-
face that is not perceived sleek, or spawns misplaced extremes and oscillations.
Taking into account the above mentioned examples it can be stated that the misplaced ex-
tremes of smooth surfaces are still an issue, even in the world-leading visualization soft-
ware solutions. Thereby the problem of creating the algorithm meeting all the criteria from
the Section 2 is an important task in scientific visualization and visual analytics.

5. Proposed Solution
In the previous research we developed an algorithm of building sleek 2D curves without
misplaced extremes [3]. The curves consist of cubic Bezier segments with the intermediate
control points calculated using a set of heuristics. Taking this algorithm as a background,
we propose its 3D generalization.

Assume having { } – a set of input points distributed in as a regular grid

in 3D space. Lets assume for disambiguation, that this grid is distributed in XOZ and Y is
vertical axis. Building a smooth surface according to this point set consists of the following
high-level steps:

1. For , build a smooth curve by the points , . This curve consists

of m – 1 Bezier segments denoted as .

2. For , build a smooth curve by the points , . This curve consists

of n – 1 Bezier segments denoted as .

3. For , build a Coons patch based on curves , , ,

 with the constant resolution . Currently no special heuristics for calculat-

ing R are developed and it is just an external algorithm parameter.
4. Triangulate the set of points built in step 3. As long as the input point set is assumed

to be a regular grid, the triangulation is trivial.
5. Calculate vertex normals using smoothing groups algorithm.
6. Additionally smooth the field of normals with Gaussian blur function.

The asymptotic complexity of this algorithm is O(mn), which suites the mentioned criteria
of efficiency. The result of this algorithm applied to the testing data set is shown in Fig. 7.

Fig. 7. Surface built by the proposed algorithm.

As it can be seen from the figure, neither misplaced extremes nor oscillations are present-
ed. The above steps are described in details in the upcoming subsections. The results are
discussed in the Section 6.

5.1. Building Sleek Curve with Smoothness Order Zero
As a first step of building result surface, its 2D slices are considered and each slice is treat-
ed as a piecewise-defined Bezier curve. The key contribution of [3] is the way to calculate

intermediate control points
()

,
()

,
()

 and
()

 to join the neighbor Bezier segments

 and without visible crease as shown in Fig. 8a (this figure is extracted from [3] for
the sake of clarity). To ensure the absence of misplaced extremes and oscillations on the
result curve, the following conditions should be fulfilled for each segment:

1. The points
()

 and
()

 should lay on the tangent to the result curve in the point .

2. The lengths of tangent vectors should be equal: |
()

| |
()

|.

3. The intermediate control points
()

 and
()

 should belong to the areas and

respectively depicted in Fig. 8b.

a b

Fig. 8. Joining of two Bezier curves (a) and areas the intermediate control points belong to
(b).

The algorithm of meeting the above conditions proposed in [3] is presented in pseudo code
in Listing 1. It must be noted, that these conditions altogether generally lead to the curve of
smoothness order 0, so formally speaking this curve is not smooth. The creases on the
curve appear in the corner cases like equal abscissa of neighbor points or transition from
one “plateau” (sequence of points with equal ordinate) to another. The algorithms ensuring
smoothness order 1 and higher spawn misplaced extremes in these cases, but our algo-
rithm does not. Instead, it “breaks” the formal smoothness locally in corner cases. Because
normally the number of creases is low, the result curve is perceived sleek, which exactly
matches the desired criteria of quality.

Listing 1. Pseudo code of the sleek curve building algorithm.

1. Input: array of 2D points , .

2. Let ⃗ represent the tangent to the Bezier segment in its starting point. The initial value
is zero vector.

3. Let ⃗ represent the tangent to the Bezier segment in its ending point. The initial value
is zero vector.

4. Let ⃗ represent the vector from the previous point to the current one.

5. Let ⃗ represent the vector from the current point to the next one: ⃗

| |
.

6. For each :

6.1. Reuse the previously calculated tangent: ⃗ ⃗ .
6.2. Reuse the previously calculated vector: ⃗ ⃗.

6.3. Calculate the denormalized difference: ⃗ .

6.4. Calculate new ⃗ :
6.4.1. If , then:

6.4.1.1. ⃗

| |
.

6.4.1.2. If ⃗ or ⃗ , then ⃗ ⃗.

6.4.1.3. Else if ⃗ or ⃗ , then ⃗ ⃗.

6.4.1.4. Else ⃗
 ⃗ ⃗

| ⃗ ⃗|
.

6.4.2. Else ⃗ .

6.5. Clamp ⃗ and ⃗ to the areas and respectively:

6.5.1. If (⃗
) (⃗), then ⃗

 .

6.5.2. If (⃗
) (⃗), then ⃗

 .

6.5.3. If (⃗
) (⃗), then ⃗

 .

6.5.4. If (⃗
) (⃗), then ⃗

 .

6.6. Let be the flag indicating whether ⃗
 .

6.7. Let be the flag indicating whether ⃗
 .

6.8. Calculate and – lengths of the corresponding tangents for the current Bezier
segment (assuming) – algorithm’s parameter):

6.8.1. If is true, then , else

 ⃗⃗⃗

 ⃗⃗

.

6.8.2. If is true, then , else

 ⃗⃗⃗

 ⃗⃗

.

6.8.3. If | ⃗
| | ⃗|, then:

6.8.3.1. If ⃗
 , then , else

 ⃗⃗

 ⃗⃗

.

6.8.4. If | ⃗
| | ⃗|, then:

6.8.4.1. If ⃗
 , then , else

 ⃗⃗

 ⃗⃗

.

6.8.5. If both and are false, then:

6.8.5.1. Let
 ⃗⃗

 ⃗⃗

 ⃗⃗

 ⃗⃗

.

6.8.5.2. If , then:

6.8.5.2.1. Let

(

 ⃗⃗

 ⃗⃗

 ⃗⃗

 ⃗⃗

).

6.8.5.2.2. If
 and

, then:

6.8.5.2.2.1. If | | | |, then , else .
6.8.6. Create the Bezier segment with the following control points: , ,

 , .

5.2. Building Coons Patches
According to the assumption, the input points are distributed in the regular grid. Each cell
of this grid is an area between 4 neighbor points bounded with 4 corresponding Bezier
segments obtained in the previous steps. To build the result surface, each cell is treated as
a Coons patch and the intermediate points inside this cell are calculated according to the
formula (1) with the resolution R, which means, new points are emitted.
To ensure better shading of the result surface, its wireframe should be as close to the regu-
lar grid as possible. However, each cell is bounded by parametric Bezier segments, and the
result points depend nonlinearly on the parameter. This means, if the parameter changes
linearly, X and Z coordinates of result points change nonlinearly. To ensure a regular grid,
the parameter should be changed in a nonlinear way.
The cubic Bezier segment is calculated as follows:

 () () ()
()

 ()
()

 , (2)

where , are the points from the input data set,

()

,
()

 are the intermediate control points calculated according to the algorithm shown

in Listing 1,
 .

Each bounding curve is parallel to either X- or Z-axis being a part of regular grid. This
means, only the pairs {X, Y} or {Z, Y} are calculated by (2).
Consider the curve parallel to X-axis. Z-coordinates of its points are all the same and X
changes according to (2). Lets assume, the parameter t is changed linearly from 0 to 1 with
the step 1/R. To ensure linear changing of X-coordinate, should be calculated using the
new parameter that should be found by solving the following equation:

 (

) ()
 ()

() ()

()

. (3)

This equation can be solved by well-known Cardan formula. After this, the points be-
come equidistant in X-direction. The similar calculations are applied to the curves parallel
to Z-axis. As a result, the regular wireframe for each Coons patch is ensured.
The next problem to be solved is the joining of neighbor patches. Using the bilinear blend-
ing in formula (1) results in the surface shown in Fig. 9. The field of normals is calculated
using trivial smoothing groups algorithm [19]: each vertex normal is an average of normals
of incident triangles.

a b

Fig. 9. Surface built using bilinearly blended Coons patches without marks (a) and with the
visible creases marked by ovals (b).

As it can be seen, the creases are visible disturbing the sleek appearance (for the sake of
clarity, the most problematic places are marked with ovals in the Fig. 9b). The common
solution of this problem is using bicubic blending instead of bilinear one.
The cubic interpolation can be expressed by the following formula [20]:

 () (

) (

)

 (

) (4)

Bicubic interpolation yields in the following [20]:
 ()

 (5)
 (() () () ())

The bicubic blending in formula (1) is the based on formulas (4) and (5). The non-trivial
part is that this kind of blending requires neighbor curves to build the current patch as
shown in the Fig. 10.

Fig. 10. Bicubically blended Coons patch with the neighbor curve segments that are used in

bicubic interpolation.

In the corner cases, where some of , , , do not exist (on the surface’ boundary),
the non-existing segments are assumed to be equal to , , , respectively for the sa-
ke of unification.
The result of bicubically blended Coons patches is shown in the Fig. 11.

a b

Fig. 11. Surface built using bicubically blended Coons patches without marks (a) and with
the visible creases marked by ovals (b).

As it can be seen, the quality gets higher, but still is not high enough. The problem is, that
the initial curves indeed have non-continuous derivative in these places. While they are
perceived sleek when viewed in 2D, the shading of corresponding 3D surface makes the
creases remarkable, because it is calculated by non-smooth normals’ field.
The possible solutions are either to increase the radius of smoothing groups used for calcu-
lating vertex normals, or to perform artificial smoothing of normals’ field.

5.3. Smoothing the Field of Normals

We decided to remove the creases by applying the smoothing to the field of normals. This
approach appears more flexible because enables different smoothing functions. We have
chosen Gaussian blur filter, because it effectively smooths out the values preserving the
high influence of the median and thereby not spoiling the surface’ curvature information
represented by the field of normals.
We apply the Gaussian blur filter as a convolution like it is traditionally done in image pro-
cessing. The vertex normals are processed componentwise. To build the convolution ker-
nel, the following formula is used:

 ()

 (() ())
, (6)

where r is the blur radius,

 – indices of kernel items.
The kernel is not normalized; instead, the normals are renormalized after blurring.
The radius r is a parameter to be tuned. It affects the strength of blur; therefore it should
be big enough to remove the creases, but not too big to preserve the curvature information
of the surface (or the shading gets unnatural because the normal won’t reflect the actual
surface shape). Obviously this parameter depends on the resolution, because the bigger is
the resolution, the more vertex normals are on the surface, the bigger should be the kernel
to cover the areas with the creases. We conducted a lot of experiments and found out, that
the acceptable balance between smoothness and correct shape shading is achieved when
the radius is about one fifth of the resolution. So, we propose the following formula:

 *

+. (7)

For example, for the resolution 17 the kernel radius will be 3. The result rendering after
smoothing the normals field with Gaussian filter using the mentioned parameters is pre-
sented in Fig. 12.

a b

Fig. 12. Surface built using bicubically blended Coons patches and Gaussian filtering of the
normals field without marks (a) and with the ovals marking the places the creases used to

be in the previous steps (b).

We consider the visual quality of the obtained result high enough.

6. Results and Discussion
As demonstrated on the test data set, the proposed method allows building the surfaces
perceived sleek and having no misplaced extremes. The core of the developed algorithm is
the method of building sleek 2D curves avoiding misplaced extremes that we proposed
more than a year ago [3]. Since then, this algorithm was intensively tested in the produc-
tion by visualizing different real-world data within the multiplatform charting library
NChart3D [21] and scientific visualization system SciVi [22]. The proposed generalization
of this algorithm to the 3D case is as well integrated into both NChart3D and SciVi. It al-
ready runs in production delivering high-quality results.
According to this testing we can state that the proposed solution completely suites the cri-
teria mentioned in the Section 2 and is thereby applicable for solving the corresponding
scientific visualization and visual analytics tasks.
The proposed algorithm has the following limitation: it assumes, the points of the input set
are distributed in the regular grid, covering this grid completely without tears. To bypass
this limitation, some kind of regularization should be applied to the initial data set as a
preprocessing stage. The regularization can be based on interpolation to fill up the tears in
the grid. However in the case of unstructured (irregular) grid or a sparse grid the proposed
method in its current form is hardly usable.

7. Conclusion
In the present work we considered the problem of high-quality graphical representation of
functional dependencies expressed as (). By investigating the well-known soft-
ware capable of 3D surface building and rendering we found out that the misplaced ex-
tremes and oscillations are an issue of almost all modern interpolation techniques in 3D
case.
We proposed an approach to build sleek 3D surfaces interpolating the given discrete set of
points and avoiding misplaced extremes and oscillations. This approach ensures rendering
results of high visual quality and can be used by solving scientific visualization and visual
analytics tasks. The developed algorithm was integrated into the software NChart3D and
SciVi and used in solving real-world visualization tasks in various application domains.
During its usage in the production it proved its correctness and stability.
The only limitation is the requirement that the input data should be presented in a form of
a regular grid. As a future work we plan to investigate the possible ways to bypass this limi-
tation without much computational effort.
The authors’ implementation of the proposed algorithm written in C++ is available on
GitHub under terms of MIT license [23]: https://github.com/icosaeder/sleek-surface.

References
1. Weisstein, E.W. NURBS Surface [Electronic Resource] // MathWorld – A Wolfram

Web Resource. URL: http://mathworld.wolfram.com/NURBSSurface.html (last ac-
cessed 01.09.2018).

2. Spitzbart, A. A Generalization of Hermite's Interpolation Formula // The American
Mathematical Monthly. – Mathematical Association of America, 1960. – Vol. 67, No. 1.
– PP. 42–46.

3. Ryabinin, K.V. Visualization of Smooth Curves without Misplaced Extremes Based on
Discrete Point Set // Scientific Visualization. – National Research Nuclear University
“MEPhI”, 2017. – Q. 1, Vol. 9, No. 1. – PP. 50–72.

4. Weisstein, E.W. Smooth Surface [Electronic Resource] // MathWorld – A Wolfram
Web Resource. URL: http://mathworld.wolfram.com/SmoothSurface.html (last ac-
cessed 01.09.2018).

https://github.com/icosaeder/sleek-surface
http://mathworld.wolfram.com/NURBSSurface.html
http://mathworld.wolfram.com/SmoothSurface.html

5. Loop, C.T. Smooth Subdivision Surfaces Based on Triangles // Master Thesis. – De-
partment of Mathimetics, University of Utah, 1987. – 74 P.

6. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A. T-splines and T-NURCCs // ACM
Transactions on Graphics. – 2003. – 22, 3 (July). – PP. 477–484.

7. Catmull, E., Clark, J. Recursively generated B-spline surfaces on arbitrary topological
meshes // Computer-Aided Design. – Elsevier, 1978. – Vol. 10 I. 6. – PP. 350–355.
DOI: 10.1016/0010-4485(78)90110-0.

8. Blender 3D Editor [Electronic Resource]. URL: https://www.blender.org/ (last ac-
cessed 01.09.2018).

9. Abbas, M., Majid, A.A., Awang, M.N.H., Ali J.M. Monotonicity-Preserving Rational Bi-
Cubic Spline Surface Interpolation // ScienceAsia. – 2014. – Vol. 40S. – PP. 22–30.
DOI: 10.2306/scienceasia1513-1874.2014.40S.022.

10. Allemand-Giorgis, L., Bonneau, G.-P., Hahmann, S., Vivodtzev, F. Piecewise Polynomi-
al Monotonic Interpolation of 2D Gridded Data // Topological and Statistical Methods
for Complex Data – Springer, 2014. – PP. 73–91.

11. Coons, S.A. Surfaces for Computer-Aided Design of Space Forms // Technical Report.
– Project MAC, MIT, 1967. – 105 P.

12. Wolfram Mathematica [Electronic Resource]. URL:
https://www.wolfram.com/mathematica/ (last accessed 01.09.2018).

13. Lee, E.T.Y. A Simplified B-Spline Computation Routine // Computing. – Springer,
1982. – Vol. 29, I. 4. – PP. 365–371.

14. VTK Library [Electronic Resource]. URL: https://www.vtk.org/ (last accessed
01.09.2018).

15. ParaView Scientific Visualization System [Electronic Resource]. URL:
https://www.paraview.org/ (last accessed 01.09.2018).

16. KiwiViewer Scientific Visualization System [Electronic Resource]. URL:
https://www.kitware.com/kiwiviewer/ (last accessed 01.09.2018).

17. Zorin, D., Schröder, P., Sweldens, W. Interpolating Subdivision for Meshes with Arbi-
trary Topology // SIGGRAPH’96 Proceedings of the 23rd annual conference on Com-
puter graphics and interactive techniques. – ACM, 1996. – PP. 189–192.

18. MathGL Library [Electronic Resource]. URL:
http://mathgl.sourceforge.net/doc_en/Main.html (last accessed 01.09.2018).

19. Ryabinin, K.V. Virtual Reality and Multimedia. Building a Virtual World with OpenGL
// Tutorial Book. – Perm State University, 2018. – 100 p.

20. Breeuwsma, P. Cubic interpolation [Electronic Resource]. URL:
http://www.paulinternet.nl/?page=bicubic (last accessed 01.09.2018).

21. Ryabinin, K.V. Development of Multiplatform Charting Library // Scientific Visualiza-
tion. – National Research Nuclear University “MEPhI”, 2014. – Q. 1, Vol. 6. No. 1. – PP.
51–67.

22. Ryabinin, K.V., Chuprina, S.I. Development of Ontology-Based Multiplatform Adaptive
Scientific Visualization System // Journal of Computational Science. – Elsevier, 2015. –
Vol. 10. – P. 370–381.

23. The MIT License [Electronic Resource]. URL: https://opensource.org/licenses/MIT
(last accessed 01.09.2018).

https://doi.org/10.1016/0010-4485(78)90110-0
https://www.blender.org/
http://dx.doi.org/10.2306/scienceasia1513-1874.2014.40S.022
https://www.wolfram.com/mathematica/
https://www.vtk.org/
https://www.paraview.org/
https://www.kitware.com/kiwiviewer/
http://mathgl.sourceforge.net/doc_en/Main.html
http://www.paulinternet.nl/?page=bicubic
https://opensource.org/licenses/MIT

